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Carbon Bond Formation



Challenges in Carbon-Carbon Bond Formation

0e©
(ﬂ 00 O Nu

)G — C_)XO® +1G -~ C_D>—Nu
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NCELG — C)Nu  +1G

® no simple Sn1 or Sy2 substitution reactions for carbon couplings on aromatic systems
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Classical Carbon Bond Forming Reactions

e Aldol condensations and related carbonyl reactions

O O O H
base
RJI\(H + HJI\R” > R/UWARH
R’ R’
® Michael additions and related vinylogous carbonyl reactions
O water O
Rﬁ + \HI\RH > R\/\)LRH
Mt R’ R’

® Diels Alder reactions and related concerted cycloadditions

D D
Z EA heat A
+ | >
N A A
D D

® carbon bond forming reactions are an important branch of synthetic organic chemistry
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Organometallic Carbon Bond Forming Reactions

e oxidative homocoupling reactions

+ l\/ﬁx2

1 1 1, -1 _ZHX’_MtO 0 0
O+ D - OO

® reductive homocoupling reactions

® catalytic organometallic carbon bond forming reactions for organic semiconductor materials
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General Mechanism of Palladium-Catalyzed Cross-Coupling Reactions

=

reductive elimination oxidative addition

QO

sz
L

Mt—X @—Mt
transmetalation

® in a “cross-coupling” reaction, two different fragments R and R’ can be coupled together
® all steps in catalytic cycle are (usually) reversible, an exergonic step provides driving force

KEY CONCEPT
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Ligand Dissociation and Oxidative Addition

L L QO
Pd - > Pdo + 2L
I L I "L

& --X
~ P ~ P~
QO@ I L I L
Pd
' L
partially filled d orbitals 4e3c bond oxidized Pd center

metal center with partially filled, polarizable MO: transition metals (groups 3-12)
metal center electron-rich & polarizable: “late” transition metals (groups 7-12)
metal center with two stable oxidation states (difference +2): group 10 (Ni < Pd >> Pt)

ligands L dissociable, making Pd electron-rich & polarizable, stabilizing molecular Pd®
ligands L strong o-donors, moderate mt-acceptors (phosphins PR3, phosphinoxides O=PR3)
residue X electronegative, good leaving group, C—X bond weak: OTf =1 > Br >> Cl >>>F
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Transmetalation

\ "
Pd "~ + Mt = > L —Pd---X > > Pd * + Pd
L \_7 Q © L Y C
CIS trans

metal center Mt is a main group metal (e.g. B, Si, Sn) or closed shell metal (e.g., Zn)
formation of salts MtX or strong covalent bond Mt—X

Pd2+ forms square-planar complexes, additional coordination sites for transmetalation
trans addition preferred due to steric considerations (if not prohibited by “bridged” ligands)
typical bases: Na;CO3, K2COs3, K3sPO4, NaOH, NEts, pyridine, ...
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Main Group Metals Used in Different Name Reactions

® Suzuki—Miyaura cross-coupling (requires a base)
OH 0 0 jo 0
o€ OO O O O
O O

e Stille coupling ® Hiyama coupling e Kumada coupling ® Negishi coupling

O O O O

® Sonogashira cross-coupling (requires a base)
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Reductive Elimination

Q i slow @ @ ] @Pd©

Pd - Pd 2 -
% @ ‘N QL
Pd
I L
trans Cis 4e3c bond reduced Pd center

® reductive elimination only possible from cIs stereoisomer
® cis-frans isomerization very slow

® ligands L should prohibit formation of trans isomer (bridged, bidentate L-L ligands)
® sterically demanding ligands L promote reductive elimination (“pushing out” the product)
® Pd center not too electron-rich, and well polarizable
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Typical Catalysts and Ligands

® monodentate ligands:
GO0 QR X
> of -

triphenylphosphine (PPhs) tri(ortho-tolyl)phosphine (Ptols) tri(tert.-butyl)phosphine (PtBus)

® bidentate, bridged ligands (chelating ligands):

e GR

bis(diphenylphosphino)ethane (dppe) bis(diphenylphosphino)propane (dppp)

® typical catalysts: Pd(PPhs)s, Pd(Ptols)s, Pd(PtBus)s, PACl2(PPhs)2, PAClz(dppe), PdCl2(dppp)
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Mechanism of the Stille Cross-Coupling Reaction

reductive elimination oxidative addition

S L S L
Pd +2 — Pd~ 2

R”’,SnBr ‘R SnR”
3 @/ 3

transmetalation

® very benign conditions, no base, but organotin reagents are volatile, toxic, cancerogenic
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Mechanism of the Suzuki-Miyaura Cross-Coupling Reaction

OO~ % O

reductive elimination oxidative addition
R R R R R
Q, Qg Q. Q.
Pd+2 +—— Pd +2 Pdt2 —— Pd +2
i Q ' L I L ' X
cis/trans isomerization R cis/trans isomerization
. ® HCSB/OR" ! NaOH
transmetalation ~ Na~ ;5" OR" |
d,C2>H hydrolysis
11 P +
OR" NaOH _ OR" I’ L N
R'_Q_B — s+ R B-OR
OR" ©0OH Na®
OR a
activation

® base mainly serves to activate the boronic acid derivative for the transmetalation step
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Proposed Mechanism of the Kumada Cross-Coupling

/ . .
R S\ \S/ R Ni(bipy) R\@/Br

reductive elimination oxidative addition

7 N\ /" R >~_-MqBr
C,\?_@ 2 \@/ 7 R~ (DR R\q
\Nio S /Br

cl' ¢l - 2 MgBrCl NI NCS

catalyst activation W
R MgBr
Mgr, "

transmetalation

® typically performed with Ni(ll) catalyst, first activation by reduction with Grignard reagent
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Proposed Mechanism of the Mizoroki-Heck Cross-Coupling Reaction

baseMX ] @—X
reductive elimination pq © oxidative addition
base% ] \k ©
Q .

H L

pd+2 +2 P.
% O

o w}
B-hydride eliminatio

L T[ complex
P

0 L — I a7 L +2

migratory insertion
(carbometallation)

® The Pd(0) complex must be regenerated from the Pd(Il) product of B-elimination
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Linear Oligomers and Polymers



Typical Classes of Polymer Semiconductors

N L0
™~ oL oy 9 K4,
n
PA PPP PPV PT PPy

OO0,

PEDOT PANI
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Dependence of Molecular Weight on Conversion and Stoichiometry

— 1+r 100
P, =
L+71r—=2x,r
Carothers Equation 80 -
S [ ?5;
| S 40 -
for complete conversion (xp, = 1) @
g r=1
20 -
— 1
Jjm—
for perfect stoichiometry (r = 1) 0.75 0,|80 0,l85 0.|90 O.l95 1.00

conversion X

® perfect stoichiometry, and very high conversion (xp, > 0.99) required for polymerization
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Suzuki Polycondensation

e poly(phenylene)s by Suzuki-Miyaura polycondensation (Schliter et al.)

__ PdL,
"\ PO " \ |/

base y
R solvent R

“AB monomer”

_ _ PdL, — =
(R"O)2B_<\_‘__/>_B(OR")2 ¥ X_<\—‘_—/>_X base " \ ‘ 7\ ‘ 7
R R R R

solvent

“AA monomer” “BB monomer” X =1, Br, Cl, OTf
R, R’ =H, alkyl, alkoxy

® boronic acid derivatives are non-toxic, easy to prepare, stable compounds

® mild reaction conditions; tolerant towards functional groups, solvents, air; chemoselective
e often performed in toluene/water mixtures (driving force from Mt—X transfer into water)
® alkyl decoration of the rigid polymer backbone for improved (entropy-driven) solubility

=P-L A. D. Schliter, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1533. 371



Mizoroki-Heck Cross-Coupling Reaction

® polymers using the Mizoroki-Heck cross-coupling reaction:

R R
H H PdL,
XQX + = - —€</: \ Ny side products
H H ligant ==
R ethylene base R n
solvent
R PdL, R
X >
: N\ ligant m
R base R n
solvent

X=1,Br, Cl, OTf

® vinyl bonds only in the trans configuration
® high molecular weights depending on solubilizing groups

=PrL Y. Li et al., J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1279 372



Wittig Olefination Reaction

® polymers using the Wittig cross-coupling reaction:

R'
R' : R"
+ L
\PPh3 solvent R \ | 7\ P Ph
R' I ]

phosphonium ylide aldehyde

® vinyl bonds in ¢is and trans conformation based on the ylide side groups
® incorporation of various side groups (alkyl, alkoxy, or phenyl)

=Pr-L A. Drury et al., Synth. Met. 1999, 103, 2478 373



Mechanism of the Wittig Olefination Reaction

e proposed mechanism of the Wittig polycondensation:

A
A
-

o}
= = Phw

h-P “P-=-0
Ph Ph Ph™ Ph

s
PhP o
o C PPh,

® betaine oxaphosphetane
intermediate

phosphonium ylide

O

O = etc. (“)
- \ + ,P;Ph _— m + N X ,P;Ph
elimination Ph "Ph Ph”™ "Ph

phosphine oxide ’

® ring decomposition is the rate-determining step

® stabilized ylides result in almost exclusive formation of the E-alkene product (trans isomer)
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Oxidative Polymerization of Pyrrole and Thiophene Derivatives

=023 0.2 o FeCl COZBU
€q. rells .
2/ \§ / \
N CHCI3, BUOAc,
H rt., 24 h
3BC4MePy P(3BC4MePy)
R R
4.0 eq. FeClj |
// \§ >~ /[ \
S CHCI5, r.t., 24 h S -
R = alkyl, aryl
3BC4MePy P(3BC4MePy)

® simple polymerization procedures with catalytic or superstoichiometric amounts of oxidant

® can also be performed electrochemically diretcly on an electrode
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Electrochemical Polymerization of Thiophene

® proposed mechanism of the electrochemical thiophene polymerization:

@ —e@, @4—»@4_»64_,

S electrode S, L6 L6

= =\ He ~2H®
A / \ S

2 O > % >
So Yo H \= >\

A =

S\ / electrode
—\ S @ S -2H® s I\ s
 Z 0 Z
So W 3 ’ Qﬁ@ﬁ Y Y

>  / S «—>

® due to increasingly low solubility, obtained poly(thiophene) will have low molecular weight

=PrL J. Simitzis et al., J. Appl. Polym. Sci. 2010, 118, 1494 376
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Electrochemical Polymerization of Thiophene

\ T
branching S
A >
WA g
S
i
ketone defect N
sp3 defect ,0 I
se A N\ _s se A\

TN ST s\ 87 TH a-p’ mislinkage

cross-linking
S / \ /

\N/ > S/

® polymerization directly on an anode, in monomer solution
® no solubility or purification problems during synthesis, no catalyst required
® obtained poly(thiophene) is spontaneously p-doped, but also contains numerous defects.
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Regioregularity of Poly(3-alkylthiophene)s

irregular regioregular
poly(alkylthiophene) head-tail head-head head-tail poly(3-alkylthiophene)

R R R
S S A\ s A N_s A N\ S
\‘/ \ /S N/ S N/ 5 \W/
X X
R R R R R

head-tail tail-tail

® alkyl decoration yields soluble, processable poly(thiophene) derivatives

® possibility of regioisomers by “erroneous” connections (head-head, tail-tail)
® irregularities disturb geometry, reduce effective conjugation length

® regioregular poly(3-alkylthiophene)s show improved properties
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Synthesis of Poly(Alkylthiophene)s

® Rieke methods for the synthesis of P3HT makes use of zinc Grignard reagent

® zinc Grignard reagent generated from arylbromide using Rieke zinc (ZnCl; + Li in situ)

R R R R

/U\ Zn*/THF /m\ + /U\ Ni(dppe)CIz» I\ 3
Br Br ~ | Brzn Br Br ZnBr

S .78 °C s” \ /'n

B - R
R= C4Hg, CeHy3, CgH17, CqoHa1s CoaHas, CqqHy7

® symmetric monomer, statistical reaction gives rise to regio-irregular poly(alkylthiophene)s
® regioregularity needed to control packing in crystalline state and thus increase mobility

=P-L P3HT Revisited — From Molecular Scale to Solar Cell Devices, S. Ludwigs, Adv. Polym. Sci. 2014, 265 379
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Synthesis of Regioregular Poly(3-alkylthiophene)s

® McCullough Route: first synthesis of regioregular P3AT via Kumada polycondensation

S NBS S LDA S

H H > Br H > Br Li
W DMF W THF, —40°C \S\_]/

R R R
regioselective deprotonation

MgBr, S [Ni(dppp)Cl,] S
>

B MgB
Kumada X

R
transmetalation polycondensation

® regioselectivity due to selective bromination and lithiation by deprotonation

® |ithiated thiophene stable at —40°C, does not react with bromide

® obtained poly(3-alkylthiophene) is 91% regioregular

® certain features of a living polymerization (controlled MW, narrow MWD, low PDI)

R. D. McCullough et al., J. Chem. Soc., Chem Commun. 1992, 70
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Mechanism of the Kumada Polycondensation According to McCullough

7\ — TT defect

N N\
associated pair

reductive elimination oxidative addition

R

R
/
\Q Bt I\ 7 s\ J
Ni N
P’\ P-NI" g \ / S Br
\_P n

S
Br MgBr
MgBr, \§_/7/

transmetalation

® Ni catalyst like initiator, remains at chain end, preferential oxidative addition of chain end

=P-L R. D. McCullough et al., Macromolecules 2004, 3526 381
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Structure and Properties of Poly(thiophene)s

HT HH HT HH
280 258 172 163

JJUN T

l
" b Regioregular P3HT
| HT linkage > 98 5% /

\
J* L/
|
ll
— YST—:\MJ‘ —

PPM 2.9 2.7 2,5 2.3 2.1 1.9 1.7 1.5

Figure 2. Expanded '"H NMR spectra of (a) regiorandom P3HT 5b
(1:1 HT/HH) and (b) regioregular P3HT 4b (HT linkage >98.5%).

McCullough Rieke FeCls
HT-HT (%) 91 54 54
HT-HH (%) 5 17 13
TT-HT (%) 2 13 18
TT-HH (%) 2 16 15
UV-Vis Amax (nM) 450 428 436
conductivity (S/cm) 600 n.d. 10
mobility (cm2/(V-s) 10-1 n.d. 10-5

McCulloch, Chem. Mater. 2014, 26, 647-663

® alkyl defects reduce effective conjugation length and disturb crystalline domains

® band gap increased, mobility and conductivity decreased
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Polymer Structure and Air Stability

HOMO —4.9 eV HOMO -5.1 eV
L=0.14 cm2V-1s- u=0.2cm?2V-1s-
1

R

/ \ S / \ S
S N/ S \ /i

R

PQT PBTTT R

R R
/ \ s s. J \ / \ s S R
S \ / \ / S S AR/ S
S R S X S \ / "
PBTDT R = alkyl P2TDCRFTXx
HOMO =5.2 eV HOMO =5.3 eV
L<0.0017cm2V-1s1 L<0.087cm2V-1s1

® incorporation of fused thiophene systems decreases HOMO level and increases air stability
® however, mobility decreased (probably due to reduced microstructural order)

=P-L Malliaras, J. Am. Chem. Soc. 2009, 131, 11930 383



cPrL

Donor-Acceptor (Low Bandgap) Polymers

Hoy+1Cyxo CxHoye1 S Ci6H33 Ci6H33
() LN / LT
/ \ { S ‘ J N
S S Y
Q N~g

n C16H3z CigHas |
CDT-BTZ-Cx ID-BTZ -
(x =16 or 20) € Poor
C1oHa21
CgHi7
LUMO q
) E
N
Cs"'wﬁ) +
CioH21 E | E
P(DPP20DT2-TT) P(DPP20DT2-TzBT12)
C  HOMO |
o ’  HOMO |
L N__o
e- Rich e- Poor Low-bandgap

Controls HOMO Controls LUMO Material

\
C8H17\') N

C1oH21

P(DPP20DPy2-T2) PBBTQT

® combination of electron donor and acceptor units in the same mnt-conjugated polymer

Watson, J. Am. Chem. Soc. 2009, 131, 7206

r'_l_w
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Absorbance

CeH13

/

P3HT

Donor-Acceptor (Low Bandgap) Polymers

Regioregular P3HT
4b (HT >98.5%)

560
526,

. 610 na

200

400

Wavelength (nm)

600

1.0
A (nm} !
| 10 0.8
g L
- 0.6
g 0:3- hBT12 0.4
2 PhBTEH '
) ) 0.2
400 ' 600 ' 800 0.0

A (nm)

Watson, J. Am. Chem. Soc. 2009, 131, 7206; Ong, Scientific Reports 2012, 2, 754

200 400 600 800 1000 1200 1400
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Polycyclic Aromatic Hydrocarbons



Polycyclic Aromatic Hydrocarbons (PAHSs)

& D G

benzene naphthalene anthracene tetracene pentacene

phenanthrene pyrene triphenylene perylene

coronene

hexabenzocoronene

graphene
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Synthesis of Pentacenes

NaOH

0 o) 0
“ —— L0 — oo C
¥ + > > |
aldol Z
0 O O

condensation

® mechanism of the aldol condensation: o
H
0O I o0 ©:0: | H
i NaOH HS H O
g <4>» P>
addition
O 0 o
HO H O H O O
~H,0
~ ~
H > > 5 |
! elimination g etc. Z
O '0 O '0 O

=PrL Anthony, Angew. Chem. Int. Ed. 2008, 47, 452 388



Synthesis of Soluble Pentacenes

R——H + " —
R
butyllithium ‘ ‘
0O \
R—::@ Li@ SnCl, X
L > -
HCI (aq) 2
O
It
R

R = >_}\|/_ 05H11_@ FSC_Q_ CeH{7— bis(ethynyl)pentacene

“PrL B. S. Ong, Chem. Mater. 2007, 19, 418 389



Frontier Orbital Participation in Diels Alder Reactions

® Diels Alder cycloadditions are “orbital-controlled” concerted reactions

(electron-rich diene)
HOMO CIC
Ph O
3G S — —
Ph—(J7O)~Ph A
9 v
=3 - 4
6 LUMO LUMO
iy
LUMO HOMO A % % g_g
(electron-deficient dienophile) 88_8\8 B HOMO

® “normal electron demand” Diels Alder: electron-rich diene and electron-poor dienophile

® orbital overlap between HOMO of electron-rich diene and LUMO electron-poor dienophile

=PrL 390



Synthesis of Rubrene

BBr2
Diels Alder OPh 1o
cycloaddltlon BBr;

dlene dienophyle [4 +2]

oG

ORS P

HI

LIS - L
SRS OC

diphenyltetracenedione rubrene
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Perylene Derivatives

bay position

M 12 1 2 1) bay funtionalization R*

ii) imide formation Q O O O

perylene-3,4,9,10-tetracarboxylic dianhydride perylene diimide

LUMO HOMO

® introduction of solubilizing groups by amide formation (little effect on electronic properties)
® substituents in bay position for tuning optical and electronic properties

=PrL 392



Bay Functionalization of Perylene Derivatives

O.O N-R’ O.O N-R’

Q O o Q 0 ) Q O
S greles S g.@ o 2
NI AV YA T L 5
r
@ Zn(CNV \E O
N | Pd] | Pd] >
é// O // O
O O
7 St Ve Vet
R'—N N-R'’
N,//C //
.

=PrL M. R. Wasielewski, Chem. Mater. 2003, 15, 2684 393
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Proposed Mechanism of Perylene Diimide Cyanation

reductive elimination oxidative addition

— Pd +2

transmetalation ZnXBr Zn(CN),
X =Br, CN

F. G. Buono, Org. Lett. 2008, 10, 5325

394



Band Gap Tuning of Perylene Bisimides

® reactions on non-bay positions to tune electronic properties

® CN substituted perylenes in a one pot-synthesis

o_N_O O-_N
Cl Cl Cl
- C' +C'
R NC
0-.0_.0 0._0_.0 o_N_O O°NNO0 07\

DBI X1 X2 X1 X2
OO ’ OO OO Zn(CN), 15a, b 19a, b
Cl c HS04 Cl RNH, Cl cl CuBr
Cl cl > ¢l ‘ cl ... > ‘ B T
Oe 100 °C, 1 d OO CH,COOH Oe DMF -
o o 5
X; 120°C,4h v, 60°C.15h 0u N o

=X3=Br,X2=X4=H 12a,b:X1=X3=Br,X2=X4=H O“'N ™0
=XZ=X3=BI',X4=H 13a,b:X1=X2=X3=Br,X4=H
=X,=X3=X,=Br 14a, b: X; = Xp= X3 = X, = Br 16a, b 17a,b

X4 O N
000 0”0”0 0“"N"N0 NC CN
R > (>
Cl ‘ Cl Cl ‘
1 2: X,=Br,Xo=X3=X,=H 9a, b: X1 =Br,X,=X;=X,=H ¢ c * ¢
3:X1=XZ=BI',X3=X4=H 10a,b:X1=X2=Br,X3=X4=H O
4:X,=X3=Br,X;=X,=H  11a,b: X =X3=Br,X;=X4=H e
5: X4 S
6:X1
7:X1

a: R= n-C4H9 b: R= n-C12H25

® instead oxidative or reductive homocoupling reactions or metal-catalyzed cross-couplings

=P-L Wang, Organic Letters 2014, 16, 394 395
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Band Gap Tuning of Perylene Bisimides

e substituents modify electronic density and molecular interactions for crystal packing

ORI e ) mm XL o
R il il S0 ¢ Wm“w’m
M M J.a%" s Mw O‘O

P

S 0*N<o
R

® instead oxidative or reductive homocoupling reactions or metal-catalyzed cross-couplings

fjgfﬁ% ﬁlﬁ

Wang, Organic Letters 2014, 16, 394
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Band Gap Tuning of Perylene Bisimides

® CN substituents successively decrease the LUMO level

® |inear correlation with the number of substituents

-3.6 .
m Experiment

-3.8 A Calculation
-4.0

-4.2
-4.4
-4.6
-4.8
-5.0

LUMO /eV

0 1 2 3 4
Number of CN Groups

® observed LUMO energies correlate well with DFT calculations

=PrL Wang, Organic Letters 2014, 16, 394 397



