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Carbon Bond Forma9on



Challenges in Carbon-Carbon Bond Forma9on

355

• no simple SN1 or SN2 subs9tu9on reac9ons for carbon couplings on aroma9c systems
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Classical Carbon Bond Forming Reac9ons
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• carbon bond forming reac9ons are an important branch of synthe9c organic chemistry

• Aldol condensa+ons and related carbonyl reac+ons
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• Diels Alder reac+ons and related concerted cycloaddi+ons

• Michael addi+ons and related vinylogous carbonyl reac+ons



Organometallic Carbon Bond Forming Reac9ons

357

• cataly9c organometallic carbon bond forming reac9ons for organic semiconductor materials

• oxida+ve homocoupling reac+ons

• cataly+c cross-coupling reac+ons

• reduc+ve homocoupling reac+ons
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KEY CONCEPT

General Mechanism of Palladium-Catalyzed Cross-Coupling Reac9ons

358

• in a “cross-coupling” reac9on, two different fragments R and R’ can be coupled together 
• all steps in cataly9c cycle are (usually) reversible, an exergonic step provides driving force
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Ligand Dissocia9on and Oxida9ve Addi9on

359

• metal center with par9ally filled, polarizable MO: transi9on metals (groups 3–12) 
• metal center electron-rich & polarizable: “late” transi9on metals (groups 7–12) 
• metal center with two stable oxida9on states (difference +2): group 10 (Ni < Pd >> Pt) 

• ligands L dissociable, making Pd electron-rich & polarizable, stabilizing molecular Pd0 

• ligands L strong σ-donors, moderate π-acceptors (phosphins PR3, phosphinoxides O=PR3) 
• residue X electronega9ve, good leaving group, C–X bond weak:   OTf ≈ I > Br >> Cl >>>F
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Transmetala9on

360

• metal center Mt is a main group metal (e.g. B, Si, Sn) or closed shell metal (e.g., Zn) 
• forma9on of salts MtX or strong covalent bond Mt–X 
• Pd2+ forms square-planar complexes, addi9onal coordina9on sites for transmetala9on 
• trans addi9on preferred due to steric considera9ons (if not prohibited by “bridged” ligands) 
• typical bases: Na2CO3, K2CO3, K3PO4, NaOH, NEt3, pyridine, ... 
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Main Group Metals Used in Different Name Reac9ons

361

• Suzuki–Miyaura cross-coupling (requires a base)

• S+lle coupling

SnR3

• Hiyama coupling

SiR3

• Kumada coupling • Negishi coupling

ZnXMgX

• Sonogashira cross-coupling (requires a base)
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Reduc9ve Elimina9on

362

• reduc9ve elimina9on only possible from cis stereoisomer 

• cis-trans isomeriza9on very slow 

• ligands L should prohibit forma9on of trans isomer (bridged, bidentate L–L ligands) 
• sterically demanding ligands L promote reduc9ve elimina9on (“pushing out” the product) 
• Pd center not too electron-rich, and well polarizable
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Typical Catalysts and Ligands

363

• typical catalysts: Pd(PPh3)4, Pd(Ptol3)4, Pd(PtBu3)4, PdCl2(PPh3)2, PdCl2(dppe), PdCl2(dppp)

• monodentate ligands:

triphenylphosphine (PPh3) tri(ortho-tolyl)phosphine (Ptol3)

P P P

tri(tert.-butyl)phosphine (PtBu3)

P P P P

bis(diphenylphosphino)ethane (dppe) bis(diphenylphosphino)propane (dppp)

• bidentate, bridged ligands (chela+ng ligands):



Mechanism of the S9lle Cross-Coupling Reac9on

364

• very benign condi9ons, no base, but organo9n reagents are vola9le, toxic, cancerogenic
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Mechanism of the Suzuki-Miyaura Cross-Coupling Reac9on
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• base mainly serves to ac9vate the boronic acid deriva9ve for the transmetala9on step



Proposed Mechanism of the Kumada Cross-Coupling

366

• typically performed with Ni(II) catalyst, first ac9va9on by reduc9on with Grignard reagent
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Proposed Mechanism of the Mizoroki-Heck Cross-Coupling Reac9on

367

• The Pd(0) complex must be regenerated from the Pd(II) product of β-elimina9on
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Linear Oligomers and Polymers



Typical Classes of Polymer Semiconductors

369



Dependence of Molecular Weight on Conversion and Stoichiometry

370

Carothers Equa9on

for complete conversion (xp = 1)

for perfect stoichiometry (r = 1)
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• perfect stoichiometry, and very high conversion (xp > 0.99) required for polymeriza9on



A. D. Schlüter, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1533.

Suzuki Polycondensa9on

371

• boronic acid deriva9ves are non-toxic, easy to prepare, stable compounds 
• mild reac9on condi9ons; tolerant towards func9onal groups, solvents, air; chemoselec9ve 
• oêen performed in toluene/water mixtures (driving force from Mt–X transfer into water)  
• alkyl decora9on of the rigid polymer backbone for improved (entropy-driven) solubility

• poly(phenylene)s by Suzuki-Miyaura polycondensa+on (Schlüter et al.)
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Y. Li et al., J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1279

Mizoroki-Heck Cross-Coupling Reac9on

372

• vinyl bonds only in the trans configura9on 
• high molecular weights depending on solubilizing groups

• polymers using the Mizoroki-Heck cross-coupling reac+on:
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A. Drury et al., Synth. Met. 1999, 103, 2478 

Wiyg Olefina9on Reac9on

373

• vinyl bonds in cis and trans conforma9on based on the ylide side groups 
•  incorpora9on of various side groups (alkyl, alkoxy, or phenyl)

• polymers using the Wifg cross-coupling reac+on:
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Mechanism of the Wiyg Olefina9on Reac9on

374

• ring decomposi9on is the rate-determining step  

• stabilized ylides result in almost exclusive forma9on of the E-alkene product (trans isomer)

• proposed mechanism of the Wifg polycondensa+on:
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Oxida9ve Polymeriza9on of Pyrrole and Thiophene Deriva9ves

375

• simple polymeriza9on procedures with cataly9c or superstoichiometric amounts of oxidant 
• can also be performed electrochemically diretcly on an electrode



J. Simitzis et al., J. Appl. Polym. Sci. 2010, 118, 1494 

Electrochemical Polymeriza9on of Thiophene 

376

• due to increasingly low solubility, obtained poly(thiophene) will have low molecular weight

• proposed mechanism of the electrochemical thiophene polymeriza+on:
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Electrochemical Polymeriza9on of Thiophene 

377

sp3 defect

cross-linking

α-β’ mislinkage

• polymeriza9on directly on an anode, in monomer solu9on 
• no solubility or purifica9on problems during synthesis, no catalyst required 
• obtained poly(thiophene) is spontaneously p-doped, but also contains numerous defects.
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Regioregularity of Poly(3-alkylthiophene)s

378

• alkyl decora9on yields soluble, processable poly(thiophene) deriva9ves 
• possibility of regioisomers by “erroneous” connec9ons (head-head, tail-tail) 
• irregulari9es disturb geometry, reduce effec9ve conjuga9on length 
• regioregular poly(3-alkylthiophene)s show improved proper9es
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P3HT Revisited – From Molecular Scale to Solar Cell Devices, S. Ludwigs, Adv. Polym. Sci. 2014, 265 

Synthesis of Poly(Alkylthiophene)s

379

• symmetric monomer, sta9s9cal reac9on gives rise to regio-irregular poly(alkylthiophene)s 
• regioregularity needed to control packing in crystalline state and thus increase mobility

• Rieke methods for the synthesis of P3HT makes use of zinc Grignard reagent 

• zinc Grignard reagent generated from arylbromide using Rieke zinc (ZnCl2 + Li in situ)



R. D. McCullough et al., J. Chem. Soc., Chem Commun. 1992, 70

Synthesis of Regioregular Poly(3-alkylthiophene)s

380

• regioselec9vity due to selec9ve bromina9on and lithia9on by deprotona9on 
• lithiated thiophene stable at –40°C, does not react with bromide 
• obtained poly(3-alkylthiophene) is 91% regioregular 
• certain features of a living polymeriza9on (controlled MW, narrow MWD, low PDI)

• McCullough Route: first synthesis of regioregular P3AT via Kumada polycondensa+on
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R. D. McCullough et al., Macromolecules 2004, 3526

Mechanism of the Kumada Polycondensa9on According to McCullough

381

• Ni catalyst like ini9ator, remains at chain end, preferen9al oxida9ve addi9on of chain end
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McCulloch, Chem. Mater. 2014, 26, 647–663 

Structure and Proper9es of Poly(thiophene)s

382

McCullough Rieke FeCl3

HT-HT (%) 91 54 54

HT-HH (%) 5 17 13

TT-HT (%) 2 13 18

TT-HH (%) 2 16 15

UV-Vis λmax (nm) 450 428 436

conduc+vity (S/cm) 600 n.d. 10

mobility (cm2/(V·s) 10–1 n.d. 10–5

• alkyl defects reduce effec9ve conjuga9on length and disturb crystalline domains 
• band gap increased, mobility and conduc9vity decreased



Malliaras, J. Am. Chem. Soc. 2009, 131, 11930

Polymer Structure and Air Stability 

383

• incorpora9on of fused thiophene systems decreases HOMO level and increases air stability 
• however, mobility decreased (probably due to reduced microstructural order)

HOMO –4.9 eV 
µ = 0.14 cm2 V–1 s–

1

HOMO –5.1 eV 
µ = 0.2 cm2 V–1 s–1

HOMO –5.2 eV 
µ ≤ 0.0017 cm2 V–1 s–1

HOMO –5.3 eV 
µ ≤ 0.087 cm2 V–1 s–1



Watson, J. Am. Chem. Soc. 2009, 131, 7206

Donor-Acceptor (Low Bandgap) Polymers

384

• combina9on of electron donor and acceptor units in the same π-conjugated polymer
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Donor-Acceptor (Low Bandgap) Polymers

385
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Polycyclic Aroma9c Hydrocarbons



Polycyclic Aroma9c Hydrocarbons (PAHs)

387

anthracene tetracene pentacenenaphthalenebenzene

pyrene triphenylene phenanthrene perylene

coronene

hexabenzocoronene
graphene



Anthony, Angew. Chem. Int. Ed. 2008, 47, 452

Synthesis of Pentacenes

388
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• mechanism of the aldol condensa+on:



B. S. Ong, Chem. Mater. 2007, 19, 418

Synthesis of Soluble Pentacenes

389

• mechanism of the nucleophilic a\ack on the “quinone” unit:
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Fron9er Orbital  Par9cipa9on in Diels Alder Reac9ons

390

• “normal electron demand” Diels Alder: electron-rich diene and electron-poor dienophile 
• orbital overlap between HOMO of electron-rich diene and LUMO electron-poor dienophile

• Diels Alder cycloaddi+ons are “orbital-controlled” concerted reac+ons
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Synthesis of Rubrene
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Perylene Deriva9ves

392

• introduc9on of solubilizing groups by amide forma9on (li\le effect on electronic proper9es) 
• subs9tuents in bay posi9on for tuning op9cal and electronic proper9es
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M. R. Wasielewski, Chem. Mater. 2003, 15, 2684 

Bay Func9onaliza9on of Perylene Deriva9ves
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F. G. Buono, Org. LeI. 2008, 10, 5325 

Proposed Mechanism of Perylene Diimide Cyana9on
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Wang, Organic LeIers 2014, 16, 394

Band Gap Tuning of Perylene Bisimides

395

• instead oxida9ve or reduc9ve homocoupling reac9ons or metal-catalyzed cross-couplings

• reac+ons on non-bay posi+ons to tune electronic proper+es 

• CN subs+tuted perylenes in a one pot-synthesis



Wang, Organic LeIers 2014, 16, 394

Band Gap Tuning of Perylene Bisimides

396

• instead oxida9ve or reduc9ve homocoupling reac9ons or metal-catalyzed cross-couplings

• subs+tuents modify electronic density and molecular interac+ons for crystal packing



Wang, Organic LeIers 2014, 16, 394

Band Gap Tuning of Perylene Bisimides

397

• observed LUMO energies correlate well with DFT calcula9ons

• CN subs+tuents successively decrease the LUMO level 

• linear correla+on with the number of subs+tuents


